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On (3,3)-Homogeneous Greechie
Orthomodular Posets
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We describe (3,3)-homogeneous orthomodular posets for some cardinality of their sets
of atoms. We examine a state space and a set of two-valued states of such logics.
Particular homogeneous OMPs with exactly k pure states (k = 1, . . . , 7, 10, 11) have
been constructed.

1. INTRODUCTION

Homogeneous orthomodular posets (OMPs) are important (Ovchinnikov,
1999; Sultanbekov, 1992). They can be used in constructing counterexam-
ples or OMPs with certain properties of the state space or the automorphisms
group (Navara, 1994; Navara and Rogalewicz, 1988; Navara and Tkadlec,
1991).

Let n,m be natural numbers. An OMP, L, is called (n,m)-homogeneous
((n,m)-hom.), if its every atom is contained in n maximal, with respect to in-
clusion, orhogonal sets of atoms (called blocks), and every such set of atoms
of L is m-element. The well known concrete logics of the form Lp

q = {X ⊂
{1, . . . , pq} | card X ≡ 0 ( mod q)} (Ovchinnikov, 1999) are nice examples of ho-
mogeneous OMPs. (3,3)-homogeneous logics arise when we consider relational
OMPs (Harding, 1996) on a finite set. Orthomodular lattices of the kind were
examined in Kohler (1982) and Rogalewicz (1989).

Let L be a finite (n,m)-hom. OMP, A the set of all atoms in L, B the set of
all blocks in L, S = S(L) the set of all states on L, and S2 the set of all two-valued
states on L. A state s on L is called pure if s is an extreme point of the convex set
S(L). It is easy to see that n · card A = m · card B.
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Theorem 1.1. (Ovchinnikov, 1999) Suppose that S2∅ = ∅ and f ∈ S2. Then
card A = mk, card B = nk where k =card (f −(1) ∩ A).

Let us recall some definitions of the theory of concrete logics (Ovchinnikov,
1999; Ovchinnikov and Sultanbekov, 1998). Let � be a set and P(�) the
Boolean algebra of all subsets of �. A concrete logic (c.l.) on � is a subset E
of P(�) satisfying (1) � ∈ E ; (2) x ∈ E ⇒ �\x ∈ E ; (3) x, y ∈ E, x ∩ y =
∅ ⇒ x ∪ y ∈ E .

Denote by V (E) the real vector space of all signed measures on E and
put E◦ = {µ ∈ V (P(�))|∀x ∈ E (µ(x) = 0)} . E is called regular if every signed
measure on E extends to a signed measure on P(�).

Theorem 1.2. (Ovchinnikov, 1999; Ovchinnikov and Sultanbekov, 1998) A con-
crete logic, E , is regular iff dimE◦ + dimV (E) = card �.

A set T ⊂ S2(L) is called full if for all x, y ∈ L it holds x ≤ y ⇔ ∀f ∈
T (f (x) ≤ f (y). OMP L is isomorphic to a c.l. iff S2(L) is full. In this case, the
sets x ′ = {µ ∈ S2(L)|µ(x) = 1} form a c.l. E = E(L) on � = S2(L) wich is called
a total representation of L. We also mention a simple criterion of the fullness of
a S2. The condition equivalent to the fullness of S2 is as follows: if x, y ∈ A are
not orthogonal, then there exists s ∈ S2(L) such that s(x) = s(y) = 1.

Let us dwell about (3,3)-hom. finite OMPs, L. Let ln =
l(P0, . . . , Pn−1,Q0, . . . , Qn−1) be a loop (Kalmbach, 1983) of order n, where Pi

denote the atoms of ln lying in the vertices of a n-polygon and Qi are the atoms
lying in the middles of sides of the n-polygon. So {Pi,Qi, Pi+1}, i = 0, . . . , n − 1
(indices modulo n) are all blocks of ln. It is easy to see that a two-valued state, s, on
ln is well determined by s(P0), . . . , s(Pn−1). We use the following abbreviation:
P01Q0 = {P0, P1,Q0}.

2. (3,3)-HOMOGENEOUS FINITE OMPS

Let L be a (3,3)-hom. OMP. Obviously card A = card B ≥ 15 and card
A �= 16.

Theorem 2.1. If card A = 15 then L is isomorphic to L3
2.

2. There exist (3,3)-hom. OMPs L17, L27 with card A ∈ {17, 27}. For L17 the set
S2 = ∅ and S(L17) is isomorphic to a segment [0; 2

3 ]. For OMP L27 the set S2 is
full and total representation of L27 is regular.

Proof:

1. Let card A = 15. Using Greechie diagram for L it is easy to write out all
two-valued states of L. So, card S2 = 6 and S2 is full. The total represen-
tation of L is minimal and isomorphic to L3

2.
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2. First we construct L17. Let us consider loop l7 = l(P0, . . . , P6,
Q0, . . . ,Q6) and add the atoms R0, R1, R2; Ri �∈ l7(i = 0, 1, 2). For seven
blocks of l7 we add following 10 blocks:

P04R0, Q025, Q03R2, P1Q4R1, Q136,Q15R0, P25R2, Q246, P36R1, R012.

Next we prove that S(L17) is isomorphic to a segment [0; 2
3 ]. Let s ∈ S(L17).

Put s(P0) = x, s(Q0) = y, s(Q6) = z, s(R0) = t , and s(Q2) = u. We show that
all values of s are described by x.

1) We have s(P1) = 1 − x − y, s(P6) = 1 − x − z, s(P4) = 1 − x − t and
s(Q5) = 1 − u − y, s(Q4) = 1 − u − z. From the blocks P45Q4, P56Q5

it follows that s(P5) = x + t + u + z − 1 and t = y.
2) Now s(Q1) = 1 − s(Q5) − s(R0) = u, s(P2) = x + y − u and s(R1) =

1 − s(P1) − s(Q4) = x + y + z + u − 1. So s(R2) = 1 − s(P1) − s(Q4)
= 2 − x − 2y − u − z. From the block P25R2 we get u = x.

3) Next s(R1) = 1 − s(P1) − s(Q4) = 2x + y + z − 1. From the blocks
P36R1,Q136 we calculate s(P3) = 1 − x − y, s(Q3) = 1 − x − z. Then
from the block P34Q3 we have 1 = 3 − 3x − 2y − z, or z = 2 − 2y − 3x.

4) If z from 3) is placed to s(R2) and s(Q3) then we get s(R2) = x, s(Q3) =
2x + 2y − 1. So from the blocks Q03R2 we have x + y = 2

3 .

So the state s has only three values – x, 2
3 − x, and 1

3 , namely:
x—on the atoms P0,Q1,Q2, R2; ( 2

3 − x)—on the atoms P2,Q0,Q6, R0;
1
3 —on all other remaining atoms.

So S(L17) is isomorphic to the segment [0; 2
3 ]

The Greechie diagram of the OMP L27 is a cube in three-dimensional space
with three atoms on each edge, with one atom in center of each side of the cube and
with the last atom in the center of cube. The blocks of L27 are the lines drawing
parallel all axes through the atoms. Thus, Greechie diagram of L27 is divided
into three layers. Then state s ∈ S2 is called type 1 (type 2) if s equals 1 on main
(secondary) diagonal in one of the layers. Then S2 has six states type 1 and six
states type 2. So, card S2=12. Next dimE◦ = 3 and dimV (E) = 9, where E is the
total representation of L27. By theorem 1.2. E is regular. �

Theorem 2.2. There exist (3,3)-hom. OMPs with card A ≤ 19 and with exactly
k pure states (k = 1, 2, . . . , 7, 10, 11).

Proof: Let us denote by Hk(m) a (3,3)-hom. logic with cardA = m and k pure
states of S. Next, we construct a nine OMPs: H1(19), H2(17), H3(18) H4(19),
H5(19), H6(19), H7(18), H10(18), H11(19).

We enumerate atoms of Hk(m) by natural numbers 1, 2, . . . , m and for a
block {i, j, n} use abbreviation i − j − n. Obviously every such OMP has the
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following 7 blocks: B1, . . . , B7: 1–2–3, 1–4–5, 1–6–7, 2–8–9, 2–10–11, 3–12–
13, 3–14–15.

1) H1(19). To B1, . . . , B7 we add the following 12 blocks:

4–8–12, 4–10–14, 5–9–16, 5–11–17, 6–8–15, 6–13–16,
7–9–18, 7–14–17, 10–16–19, 11–13–18, 12–17–19, 15–18–19.

From the systen of linear equations s(i) + s(j ) + s(n) = 1, {i, j, n} ∈
B we found the unique solution s(i) = 1

3 (i = 1, . . . , 19).
2) H2(17). Consider L17 from Theorem 2.1 as H2(17). Then S has two pure

states (x = 0, x = 2
3 ).

3) H3(18). To B1, . . . , B7 we add the following 11 blocks:

4–8–12, 4–14–16, 5–10–13, 5–17–18, 6–11–12, 6–16–18,
7–9–17, 7–10–15, 8–15–18, 9–13–16, 11–14–17.

Let s ∈ S. Put s(17) = x, s(18) = y. Then s has values: x—on the atoms
2, 4, 6, 13, 15; y—on the atoms 1, 9, 10, 12, 14; 1 − x − y—on the atoms
3, 5, 7, 8, 11, 16. The state space S is isomorphic to a triangle: 0 ≤ x ≤
1, 0 ≤ y ≤ 1, x + y ≤ 1. So, S has three pure states: (0,0),(1,0),(0,1).

4) H4(19). To B1, . . . , B7 we add the following 12 blocks:

4–8–12, 4–10–14, 5–9–13, 5–11–16, 6–8–15, 6–11–17,
7–9–18, 7–10–19, 12–16–18, 13–17–19, 14–17–18, 15–16–19.

Let s ∈ S. Put s(6) = x, s(8) = y. Then s has values: s(1) = 2y − 1
3 ,

s(2) = 1 − 2y, s(3) = s(12) = s(13) = 1
3 , s(4) = s(5) = 2

3 − y, s(7) =
4
3 − x − 2y, s(9) = y, s(10) = 2

3 − x, s(11) = x + 2y − 2
3 , s(14) =

s(18) = x + y − 1
3 , s(15) = s(16) = 1 − x − y, s(17) = 5

3 − 2x − 2y,
s(19) = 2x + 2y − 1.

The state space S is isomorphic to a parallelogram: 0 ≤ x ≤ 2
3 , 1

6 ≤
y ≤ 1

2 , 1
2 ≤ x + y ≤ 5

6 . So, S has four pure states:

(0, 1
2 ), ( 1

3 , 1
6 ), ( 2

3 , 1
6 ), ( 1

3 , 1
2 ).

5) H5(19). To B1, . . . , B7 we add the following 12 blocks:

4–8–12, 4–10–14, 5–9–15, 5–11–13, 6–13–16, 6–15–17,
7–11–18, 7–12–19, 8–17–18, 9–16–19, 10–17–19, 14–16–18.

Let s ∈ S. Put s(15) = x, s(19) = y. Then s(18) = y, s(6) = 1
3 − x + y

and s has values:

x—on the atoms 1, 13; ( 2
3 − x)— on the atoms 3, 5;

( 2
3 − y)—on the atoms 7, 16, 17; 1

3 —on all other remaining atoms.

The state space S is isomorphic to a pentagon: 0 ≤ x ≤ 2
3 , 0 ≤ y ≤ 2

3 ,
x − y ≤ 1

3 . So, S has five pure states: (0, 0), (0, 2
3 ), ( 1

3 , 0), ( 2
3 , 1

3 ), ( 2
3 , 2

3 ).
6) H6(19). To B1, . . . , B7 we add the following 12 blocks:

4–8–12, 4–10–14, 5–9–13, 5–11–16, 6–9–15, 6–11–17,
7–10–18, 7–13–19, 8–16–19, 12–17–18, 14–17–19, 15–16–18.
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Let s ∈ S. Put s(2) = x, s(10) = y. Then s(5) = x, s(6) = x − y +
1
3 , s(11) = 1 − x − y, s(17) = 2y − 1

3 , s(18) = 1 − 2y and s has also
values:

y—on the atoms 7, 15, 16; ( 2
3 − x) —on the atoms 1, 9;

( 2
3 − y)—on the atoms 14, 19; 1

3 —on the atoms 3, 4, 8, 12, 13.
The state space S is isomorphic to a hexagon: 0 ≤ x ≤ 2

3 , 1
6 ≤ y ≤

1
2 , y + x ≤ 1, y − x ≤ 1

3 . So, S has six pure states:

(0, 1
6 ), (0, 1

3 ), ( 1
6 , 1

2 ), ( 1
2 , 1

2 ), ( 2
3 , 1

3 ), ( 2
3 , 1

6 ).

7) H7(18). To B1, . . . , B7 we add the following 11 blocks:

4–8–12, 4–10–14 5–11–15, 5–16–17, 6–8-18, 6–10–16,
7–9–15, 7–12–17, 9–13–16, 11–13–18, 14–17–18.

Let s ∈ S. Put s(1) = x, s(3) = y, s(18) = z. Then s(2) = 1 − x −
y, s(17) = 1 − 2z and s has also values: x—on the atoms 8, 10; y—
on the atoms 9, 11; (1 − x − z)—on the atoms 4, 6; z—on the atoms 5, 7,
12, 14, 16; (1 − y − z)—on the atoms 13, 15.

The state space S is isomorphic to a polytope in three-dimensional
space: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

2 , x + y ≤ 1, x + z ≤ 1, y + z ≤
1. So, S has seven pure states:

(0,0,0), (0, 1, 0), (1, 0, 0), (0, 0, 1
2 ), (0, 1

2 , 1
2 ), ( 1

2 , 0, 1
2 ), ( 1

2 , 1
2 , 1

2 ).

8) H10(18). To B1, . . . , B7 we add the following 11 blocks:

4–8–12, 4–10–14 5–8–16, 5–11–17, 6–12–16, 6–14–17,
7–9–13, 7–11–15, 9–17–18, 10–13–18, 15–16–18.

Let s ∈ S. Put s(6) = x, s(16) = y, s(17) = z. Then s(1) =
2y − x, s(11) = 2y − z, s(12) = 1 − x − y, s(14) = 1 − x − z, s(11) =
1 − y − z and s has also values:

x—on the atoms 3, 4; y—on the atoms 8, 9, 13;(1 − 2y)—on the atoms 2, 5, 7;
z—on the atoms 5, 10; (1 − y − z)—on the atoms 13, 15.
The state space S is isomorphic to a polytope in three-dimensional

space: 0 ≤ x ≤ 2
3 , 0 ≤ y ≤ 1

2 , 0 ≤ z ≤ 2
3 , x + y ≤ 1, x + z ≤ 1, y + z ≤

1, x
2 ≤ y, z

2 ≤ y.
So, S has 10 pure states:

(0, 0, 0), (0, 1
2 , 0), ( 1

2 , 1
2 , 0), ( 1

2 , 1
2 , 1

2 ), (0, 1
2 , 1

2 ),

(0, 1
3 , 2

3 ), ( 1
3 , 1

3 , 2
3 ), ( 1

2 , 1
4 , 1

2 ), ( 2
3 , 1

3 , 1
3 ), ( 2

3 , 1
3 , 0).

9) H11(19). To B1, . . . , B7 we add the following 12 blocks:

4–8–12, 4–10–14 5–9–15, 5–11–13, 6–8–16, 6–10–17,
7–13–19, 7–15–18, 9–17–19, 11–16–18, 12–17–18, 14–16–19.

Let s ∈ S. Put s(10) = x, s(15) = y, s(19) = z. Then s(1) = x + y −
1
3 , s(6) = 1

3 − x + z, s(7) = 1 − y − z and s has also values:

x—on the atom 8; y—on the atom 13; z—on the atom 18;



962 Sultanbekov

2
3 − x—on the atoms 2, 4; 2

3 − y—on the atoms 3, 5; 2
3 − z —on the atoms

16, 17; 2
3 − z—on the atoms 16, 17; 1

3 —on the atoms 9, 11, 12, 14.

The state space S is isomorphic to a polytope in three-dimensional
space: 0 ≤ x ≤ 2

3 , 0 ≤ y ≤ 2
3 , 0 ≤ z ≤ 2

3 , x + y ≥ 1
3 , z ≥ x − 1

3 1, y +
z ≤ 1.

So, S has 11 pure states:

( 1
3 , 0, 0), (0, 1

3 , 0), (0, 2
3 , 0), ( 1

3 , 2
3 , 0), ( 2

3 , 2
3 , 1

3 ), ( 2
3 , 0, 1

3 ),

(0, 2
3 , 1

3 ), ( 1
3 , 0, 2

3 ), ( 2
3 , 0, 2

3 ), ( 2
3 , 1

3 , 2
3 ), (0, 1

3 , 2
3 ).

�

Remark 2.3. The special interest have (3,3)-hom. OMPs with a unique state.
What least number of atoms of such logic? An example with 22 atoms till now
was known (Greechie and Miller, 1970). The example, constructed by us, has 19
atoms, and we did not manage to construct OMP with smaller number of atoms.
Probably number of atoms 19 cannot be reduced; we yet have no proof it. In Ptak
(1987) was developed a method of construction of OMPs with a unique state,
however these logics are not homogeneous.

Using Greechie loop lemma (Kalmbach, 1983) it is not difficult to show, that
all listed above (3,3)-hom. logic Hk(m) are not orthomodular lattices. Certainly the
examples of orthomodular lattices with such property will have the much greater
number of atoms.

Remark 2.4. There is a well-known method of constructing the finite (3,3)-hom.
OMPs with even card A. Let n ≥ 9 and A = {ai |i = 0, 1, . . . , 2n − 1} be a set of
atoms. Then sets {a2i , a2i+1, a2i+2}; {a2i−5, a2i , a2i+5} (indices modulo 2n) as the
blocks generate some (3,3)-hom. logic L(2n). For example, L(22) has one, L(20)
has two, and L(18) has three pure states for the corresponding state spaces. But
the author is not familiar with any convenient method of constructing such OMPs
with odd card A.

Remark 2.5. (3,3)-hom. logics arise when we consider a relational OMPs
(Harding, 1996) on a finite set. For example, the relational OMP on 8-element
set is (3,3)-homogeneous. Every horizontal summand of this OMP has 28
atoms and exactly one pure state. We present all blocks of this summand:

1–13–15, 1–6–21, 1–14–22, 2–6–25, 2–5–17, 2–18–26, 3–9–13,

3–10–25, 3–14–26, 4–9–17, 4–10–21, 4–18–22, 5–15–19, 6–23–27,

7–11–13, 7–12–25, 7–15–27, 8–11–21, 8–12–17, 8–19–23, 9–16–20,

10–24–28, 11–16–24, 12–20–28, 14–24–27, 15–20–26, 16–19–22, 18–23–28.
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